Standard Linear Guide

C

C

1.1 Characteristics

1.2 Construction

1.3 Advantage

Maintence free - No need for frequent periodic lubrication or automatic lubrication systems.

4 No oil leakage concern, easy for cleaning.

1.4 Interchangeability Notice

- Check the mounting height (H)
- Check the mounting width (W2)
- 3 Check the block length (L)
- 4 Check the block's body size (L1)
- 5 Check the hole diameter and pitches on the block (BXJ)
- 6 Check the rail width (W1)
- Check the pitch of the rail (F)
- 8 Check the hole diameter and rail size (dxDxh)

9 When a specific length is required, please advise the (G) values in your order.

Miniature

Ball Screw

Support Unit

1.5 Accuracy Selection

We have three grades for your selection: Normal(N)/ High(H)/ Precision(P)

The accuracy of linear guides can be divided into three types: Running parallelism, Tolerance, and Difference of heights and widths. (As several blocks are used on one rail, or as several shafts are installed on the same surface, the Difference of heights and widths of each model are specified.)

1.6 Accuracy Standard

Fig.1.6.1 BR rail length and running parallelism

			Unit : mm		
	GRADE				
ITEM	Normal (N)	High (H)	Precision (P)		
Tolerance of height (H)	± 0.1	± 0.04	0-0.04		
Tolerance of width (W)	± 0.1	± 0.04	-0.04		
Difference of heights ($\triangle H$)	0.03	0.02	0.01		
Difference of widths ($ riangle W$)	0.03	0.02	0.01		
Running parallelism between the block surface D and rail surface A	△C Refer to Fig.1.6.1				
Running parallelism between the block surfaceEand rail surfaceBandC	△D Refer to Fig.1.6.1				

1.6.1 Definitions

1 Difference of heights (riangle H)

The difference is obtained by measuring the different blocks on the same rail position in terms of the difference between the maximum and minimum heights (H).

2 Difference of widths (\triangle W)

The difference is obtained by measuring the different blocks on the same rail position in terms of the difference between the maximum and minimum widths (W).

3 Running parallelism

This is refer to the running parallelism tolerance between the two reference planes of rail and block when the block is moved along the entire rail length, the rail being screwed to the reference plane.

Standard

Ball Caged

Miniature

Ball Screw

Support Unit

1.7 / Preload

1 Radial clearance

The radial clearance of the linear guide means the radial movement of the central portion of the block when the linear guide is fixed, moving the block up and down lightly at the center of its length. There are five types of radial clearances: ZF (Clearance), Z0 (No Preload), Z1 (Light preload), Z2 (Medium preload), and Z3 (Heavy preload). The radial clearance of the linear block has a significant impact on the running accuracy, load resistance and rigidity, so it is important to choose the clearance appropriately according to the application. In general, considering the impact of vibration caused by reciprocating motion, choosing a negative clearance will bring good effects on service life and accuracy.

2 Preload

The purpose of tpreload is to increase the rigidity of the block and eliminate the internal load applied to the steel ball in advance, such as clearance. The codes Z1, Z2, and Z3 of the ABBA linear guide indicate that the clearance value is negative after the preload is applied. The method of adjusting the preload is to change the size of the steel ball. Generally, the work of adjusting the preload must be completed at the original factory. If distributors or customers would like to adjust the preload by themselves, please contact the factory for related technical information.

	Choice of radial clearance and preload						
	ZF (Clearance)	Z0 (No Preload)	Z1 (Light preload)	Z2 (Medium preload)	Z3 (Heavy preload)		
Conditions of Use	Nearly no precision is required and sliding resistance is very small	The load direction is constant, the vibration and impact are small, and the two axes are used side by side. The accuracy is not required, but small sliding resistance is required.	Cantilever load or moment acts, one axis is used, and high accuracy is required during light load	High rigidity is required, with vibration or impact, heavy cutting machine tools etc.	With highest rigidity requirements and extreme impact resistance		
Application	Conveyor	Flame cutting machine Automatic packaging machine Welding machine Robotic arm Injection molding machine	Grinding table feed shaft Automatic coating machine High-speed material supply- device PCB punching machine Precision XY Stage	Machining Center CNC lathe Grinding wheel feed shaft Milling machine Boring machine	Steel plate cutting machine Punch		

Consider load and life during preload

When using preload to linear guide, it is necessary to consider the preload load for life calculation due to the internal load in the block beforehand.

4 Rigidity

When linear guide is borne to a load, steel balls, blocks, or rails are elastically deformed within the allowable load range. At this time, the ratio of the load to the displacement is the rigidity value. With the increase of the preload amount, the rigidity of the linear guide also increases. For the 4-directions equivalent loading capacity type of ABBA, the effect of the preload can keep the external load until increasing up to about 2.8 times the preload.

Table 1.7.1 Preload class and preload force

ltem Class	Code	Preload force
Clearance	ZF	0
No preload	Z0	0
Light preload	Z1	0~0.02 C
Medium preload	Z2	0.02C~0.05 C
Heavy preload	Z3	0.05C~0.07 C

C: Basic dynamic load rating

Table 1.7.2 Relationship between optional precision and preload of linear guide

					Unit : µm
	Non-interchangeable type			Interchang	jeable type
Accuracy	Р	Н	N	Ν	Н
	-	-	ZF	ZF	-
	Z0	ZO	ZO	ZO	Z0
Preload	Z1	Z1	Z1	Z1	Z1
	Z2	Z2	Z2	-	-
	Z3	Z3	Z3	-	-

Note:

The interchangeable type is packaged for rail and block separately, which can be assembled by the customer with guaranteed accuracy. Non-interchangeable rail and block have been assembled and packed together. After receiving the goods, users cannot disassemble, exchange, or change the direction of the blocks, otherwise the product may lose its original accuracy.

1.8 Surface treatment

The surface of the rails and blocks of ABBA standard linear guides can do surface treatment for anti-rust or aesthetic purposes. The standard surface treatment options which we currently provide are as follows:

Code	Surface treatment	Coating Hardness	Color	Salt spray test (ASTM B-117)	RoHS	REACH	Maximum rail length
Н	Hard chromium	800 ~ 1300 HV	GlossSilver	24 hours	No	No	3850 mm
Т	Trivalent chromium	700 ~ 800 HV	Gloss Silver	24 hours	Yes	Yes	4000 mm
В	Black oxidation	-	Gloss black	-	Yes	Yes	4000 mm

Standard

Ball Caged

Miniature

Ball Screw

Support Unit

Linear Guide

7

1.9 Suggestion in Assembly

U	Init		mm
U	'I II C	٠	

	Maximum	Maximum	shoulder	Maximum	shoulder	Rail Bolt	Recomme	ended size	of block lock bolt
Item	Fillet of rail	height (I	Hr) of rail	height (H	s) of block	length	Locked fro	m above	Locked from below
	(Ra)	Min.	Max.	Min.	Max.	suggestion(Lb)	Flange type	Without flange type	Flange type
BR-15	0.6	2.5	3.5	3	4	M4x20	M5	M4	M4
BR-20	0.6	2.5	4	4	5	M5x25	M6	M5	M5
BR-25	0.8	3	5	4	5	M6x30	M8	M6	M6
BR-30	0.8	3	5	4	6	M8x30	M10	M8	M8
BR-35	0.8	3.5	6	5.5	6	M8x35	M10	M8	M8
BR-45	0.8	4.5	8	6	8	M12x45	M12	M10	M10

Linear Guide

Ball Screw

1.10 Configuration of Linear Guide

The linear guide can be configured differently according to the demand of the machine structure and the load direction. The main configuration methods are as follows. When using oil lubrication, the lubricating oil path of the block will vary due to different configuration methods. Please specify the configuration method when ordering.

1.11 Fixing method of Linear Guide

When there is vibration or impact force in the machine, the rail and block are likely to deviate from the original fixed position, which affects the running accuracy and service life. To avoid this situation, it is recommended to fix the rail and block according to the following fixing methods.

1.12.1

Installation with vibration and stirke in the machine with high rigidity and high accurcy required

Installation of rail

Ball Caged Linear Guide

Standard

Miniature

Ball Screw

Support Unit

2 Installation of block

 Install the platform on the block and lock the block mounting bolts, but not fully tightened.
 Use the positioning bolts to lock the master surface of the block and the lateral mounting surface of the platform to position the platform.
 Tighten the block mounting bolts in the order of the diagonal of the block from (1) to (4).

Installation of rail without positioning bolts

Subsidiary side

1.12.2

Master side

Lock the assembly bolts, but do not fully tighten them. Use a vise to press the rail master surface against the bed's lateral mounting surface, and then use a torque wrench to tighten the rail mouting bolts in order according to the specified torque value.

1 Installation of master side rail

Installation of subsidiary side rail

Linear block gauge method

Place the linear block gauge between the two rails, use the micrometer to adjust it to the reference side of rail parallel to the reference surface, and then use the linear block gauge as a reference to adjust the straightness of the driven side of rail by using the micrometer. The rail mounting bolts are tightened in sequence from the end of shaft.

Moving platform method

The two blocks on the reference side are fixed and locked on the platform, and the rail on the driven side and one block are locked on the bed and platform individually, but not completely locked tightly. Fix the micrometer on the platform, and make its probe contact the side of the subsidiary side block, move the platform from the shaft end to calibrate the parallelism of the subsidiary side rail, and simultaneously tighten the mounting bolts in sequence.

Imitating the reference side rail method

The two blocks on the master side and one block on the subsidiary side are fixed and locked on the platform, while the rail on the subsidiary side and the other block are locked on the bed and the platform indivisually, but not completely locked tightly. Move the platform from the shaft end, adjust the parallelism of the subsidiary side rail according to the change of rolling resistance, and simultaneously tighten the mounting bolts in sequence.

Special tool installation method

Use a special tool to adjust the parallelism of the subsidiary side rail to the master surface according to the installation interval based on the lateral master surface of the master side rail, and simultaneously tighten the mounting bolts in sequence.

3 Installation of the block is the same as the previous example

Ball Screw Support Unit

Linear Guide

Standard

Ball Caged

Miniature

Screw

Ball

1.12.3 Installation of rails without lateral positioning surfaces

2 Installation of subsidiary side rail and block is the same as the previous example

Recommended torque for mounting bolts of rail 1.12.4

When installing the rail, the locking force of the mounting bolts will affect the overall assembly accuracy. Therefore, the uniformity of the locking force is very important. It is recommended to tighten the mounting bolts with a torque wrench according to the torque values in the table on the right. Different mounting surfaces and bolt strengths have different bolt torque.

Bolt torque value		Unit : kgf*cm		
Delt strength	Nominal	Mounting surface material		
Boit strength	bolt model	Steel or cast iron	Aluminum	
	M4	25	19	
	M5	52	38	
	M6	88	65	
0 0	M8	220	157	
0.0	M10	440	314	
	M12	770	539	
	M14	1240	884	
	M16	2000	1426	
	M4	49	32	
	M5	95	63	
	M6	162	108	
12.0	M8	392	265	
12.9	M10	794	529	
	M12	1373	912	
	M14	2067	1378	
	M16	3333	2222	

1.12.5 Permissible deviations of mounting

Due to the design of the 4-row X-shaped of the ABBA linear guide, it has excellent self-aligning ability. Even if the mounting surface is slightly skewed or deviation, it can still have smooth linear motion. The following is an explanation for the ABBA linear guide can correct the maximum error on the mounting surface.

However, for high-precision applications, the mounting surface must are with enough rigidity. And the permissible deviations of mounting are also need to be cut in half. Unit : µm

Height deviation in lateral direction(e_2)

Height deviation in lateral direction (e_2) can be calculated as follows:

$$e_2 = \frac{X \times f_{e_2}}{500}$$

e₂: Height deviation in lateral direction (µm)

X : Center distance between two rails (mm) fe2 : Height deviation in lateral direction coefficient

					Unit : µm
Nominal	Height de	eviation in	lateral dire	ction coeff	icient (fe2)
size	Z3	Z2	Z1	Z0	ZF
15	40	45	85	130	190
20	45	50	85	130	190
25	60	70	85	130	195
30	80	90	110	170	250
35	100	120	150	210	290
45	110	140	170	250	350

Nominal	Parallelism error tolerance for 2 axes(e ₁)				
size	Z3	Z2	Z1	Z0	ZF
15	10	13	18	25	35
20	12	18	20	25	35
25	15	20	22	30	42
30	20	27	30	40	55
35	22	30	35	50	68
45	25	35	40	60	85

Flatness in top mounting plane(e₃)

Y

Flatness in top mounting plane (e_3) can be calculated as follows:

$$e_3 = \frac{Y \times f_{e_3}}{500}$$

e₃ : Flatness in top mounting plane (µm) : Center distance between two blocks (mm)

			Unit : µm
Nominal	Flatness in top mo	ounting plane deviat	ion coefficient (f_{e_3})
size	Short block	Standard length block	Extended length block
15	28	20	14
20	28	20	14
25	28	20	14
30	33	24	17
35	33	24	17
45	33	24	17

Standard

Ball Caged

Miniature

Screw

Ball

Linear Guide

1.13 Dimension of blind hole

Nominal size	Screw size (M)	Screw Tread h (mm)
15	M5	8
20	M6	10
25	M6	12
30	M8	15
35	M8	17
45	M12	24

1.14 Indication and assembling of Linear Guide

1.14.1

Jointed rail

Jointed rails can be ordered if a rail length is required that exceeds maximum length of rail. Refer to below for markings.

Note:

ABBA gives priority to the accuracy and smoothness of the joint, so G1 + G2 = F, but it is not guaranteed that G1 = G2 = F/2.

1.14.2 Definition of the end distance (G value)

The end distance (G value) of ABBA linear guide is selected as follows:

If customers have no special requirements, the calculation of standard end distance is as follows:

Total length of rail/Rail mounting hole distance = Integer * Hole distance + Remainder Remainder/2 = End distance

But if the distance from the end to the edge of the nearest mounting hole is less than 5mm, (Remainder+Rail mounting hole distance)/2 = End distance

Example 1 :

BRS25-A0C2Z0-00250ND0-00S00 type linear guide

Total length of rail= 260, Rail mounting hole distance= 60Total length of rail 260 / Rail mounting hole distance 60 = 4*60+20

End distance= 20/2= 10mm

But the hole diameter of the rail (D value) = 11mm, so the radius = 5.5mm From the end of the rail to the edge of the nearest mounting hole 10-5.5 = 4.5mm < 5mm,

Then increase its end distance to (20+60) / 2 = 40mm,

Meet the requirements after increasing the end distance

Example 2 :

BRS35-LRC2Z1-09800ND0-00S00 type linear guide Total length of rail= 9800, Rail mounting hole distance= 80 Total length of rail 9800 / Rail mounting hole distance 80 = 122*80+40 End distance= 40/2= 20mm But the hole diameter of the rail (D value) = 14mm, so the radius = 7mm From the end of the rail to the edge of the nearest mounting hole 20-7 = 13mm > 5mm, Meet the requirements

1.15 Definition of load rating and coefficient

1.15.1 Definition of load rating

Basic static load rating: C₀

We define the basic static load rating C_0 as a static load of constant magnitude acting in one direction under which the sum of the permanent deformations of rolling elements and raceway equals 0.0001 times of the diameter of the rolling elements.

Basic dynamic load rating: C

When each group of identical linear motion system is applied independently under the same condition, basic dynamic load rating C is the load of constant magnitude acting in one direction that results in a nominal life of 50km.

1.15.2 Static safety factor fs

Static safety factor : fs

Static safety factor fs is the ratio of the basic static load rating $C_{\scriptscriptstyle 0}$ to the load acting on the linear guide system.

 $fs=(fc * C_0)/P$ or $fs=(fc * M_0)/M$

- fs : Static safety factor
- C₀: Basic static load rating
- P[°]: Design load
- fc : Contact factor
- M.: Static permissible moment
- M: Design moment

Reference value of static safety factor fs shown below:

Operating condition	Load condition	Minimum fs
Normally	Small impact and deflection	1.0 ~ 1.3
stationary	Big impact or twisting load is applied	2.0 ~ 3.0
Normally	Small impact or twisting load is applied	1.0 ~ 1.5
moving	Big impact or twisting load is applied	2.5 ~ 5.0

ABBA LinearTech An Ewellix company

Standard

Screw

Ball

Support Unit

1.15.3 Contact factor fc

In linear motion system, it is hard to obtain identical load distribution due to moments, errors and other factors on the mounting surfaces. When multiple blocks on a rail are used in close contact, the basic load ratings C and C₀ corresponding with contact factors are shown aside.

Numbers of blocks in close contact	Contact factor fc
2	0.81
3	0.72
4	0.66
5	0.61
Normal operation	1

1.15.4 Hardness factor fn

For linear motion system, its optimum load carrying capacity is HRC 58 to 64 hardness on the race-ways.

If the hardness is under HRC 58, both the basic dynamic load rating and basic static load rating should be multiplied by hardness factor fh.

1.15.5 Temperature factor ft

When a linear motion system is subject to temperature above 100° C, the temperature factor should be taken in to consideration.

1.15.6 Load factor fw

The load acting on an block is resulting from acceleration, impact loads and vibration. It is extremely difficult to quantify these additional dynamic forces.

So in order to estimate the impact of this load on system life, the load must be multiplied by factor fw. Depending on he mean speed and strength of the impact load, the suggested fw values listed in the table below.

Vibration & impact	Speed (V)	fw
Light external vibrations or impacts	At low speed $V \leq 15$ m/min	1~1.5
Small external vibrations or impacts	At medium speed $15 < V \leq 60$ m/min	1.5~2.0
Significant external vibrations or impacts	At high speed V > 60m/min	2.0~3.5

1.15.7

Minimum stroke factor fm

When the single trip of running stroke is shorter than the length of the iron piece of the block, the operating life of the block will be reduced. At this time, minimum stroke factor fm must be multiplied by the calculation result of the life.

Length of block iron / single trip of running stroke	fm
1	1
0.9	0.91
0.8	0.82
0.7	0.73
0.6	0.63
0.5	0.54
0.4	0.44
0.3	0.34
0.2	0.23

1.16 Life calculation formula

Given the basic dynamic load rating C and equivalent load P, the life of the linear guide is calculated as follows:

$$L = fs * \left(\frac{fh * ft * fc}{fw} \star \frac{C}{P}\right)^3 \star 50$$

L: Nominal life (km) (When a batch of the same linear motion system moves one by one under the same conditions, 90% of them can reach the total running distance without surface peeling.)

P: Equivalent load

Use the following formula to calculate the nominal life (L). When the stroke length and reciprocation times are constant, the life can be calculated as follows

Ln=
$$\frac{L*10^{6}}{2*Ls*N1*60}$$

Ln: Life time (h) Ls: Stroke length (mm) N1:Reciprocation times/per minute (min⁻¹) Standard

1.17 Calculation of workload

The load acting on the linear guide will change depending on the position of the gravity of the object, the thrust position, and the inertial force generated by the acceleration and deceleration as start and stop during operation. Therefore, when using a linear guide, various conditions of usage must be considered to calculate the correct workload.

1.18 Calculation of equivalent load

The block of the linear guide can withstand loads and moments in radial, reverse-radial, and lateral directions at the same time. When there are multi-directional loads, all loads can be converted into equivalent loads in the radial or lateral direction. Then calculate its life or static safety factor.

ABBA's BR series linear guides are designed with equal load capacity in four directions. When two or more (including two) rails are used in pairs, the equivalent load is calculated as follows.

 $P_E = \left| P_R \right| + \left| P_T \right|$

- P_E : Equivalent load (kgf)
- P_R : Radial or reverse radial load (kgf)
- P_T : Lateral load (kgf)

In the case of a single rail, the equivalent load must take into account the moment effect, and its calculation formula is as follows.

$$P_E = \left| P_R \right| + \left| P_T \right| + C_0 \cdot \frac{\left| M \right|}{M_R}$$

 P_E : Equivalent load (kgf)

- P_R : Radial or reverse radial load (kgf)
- P_T : Lateral load (kgf)
- C_0 : Basic static load rating (kgf)
- M : Calculation torque (kgf *m)
- M_R : Allowable static torque (kgf *m)

1.19 Calculation of average load with variable load

When the block in operation is subjected to a variable load, the average load equivalent to the fatigue life of the block can be obtained according to the varying load conditions to calculate its fatigue life. The basic calculation formula for the average load of rolling elements as steel balls is shown below.

$$P_m = \sqrt[4]{\frac{l}{L} \sum_{n=l}^{n} (P_n^{i} \cdot L_n)}$$

 P_m : Average load (kgf)

- P_n : Variable load (kgf)
- *L* : Total travel distance (mm)
- L_n : Traveling distance as load P_n working

Standard

Ball Caged

Miniature

Ball Screw

Linear Guide

1.20 / Friction

Refer to the following formula to calculate friction

 $F = \mu * W + f$

- F: Friction (kgf) W: Load (kgf)
- μ : Friction factor f: Running resistance of standard dust wiper

µ : Friction factor

C : Basic dynamic load rating (kgf)

f: Friction resistance of standard front seal

Unit : kgf							
Friction resistance							
Model	Standard front seal						
BR15	0.4						
BR20	0.5						
BR25	0.6						
BR30	0.8						
BR35	0.95						
BR45	1.4						

Note:

The value is based on the block with standard front seal at both ends and added with Grease No.2.

Standard

Ball Caged

Miniature

Linear Guide

1.21 Lubrication

1.21.1 Factory pre-lubrication

BR blocks are factory pre-lubricated with Grease No.2 and the lubricant reservoir is factory pre-lubricated with Grease No.00.

1.21.2 Grease re-lubrication

1 Re-lubrication intervals recommendation

- 1. Norminal size 30 and below: per 100km; nominal size 35 and above: per 40km
- 2. Make supplimentary periodically per 3 months.

Re-lubrication intervals should be apply upon one of above condition comes first.

2 Grease inputting recommendation

Recommended whether for first or relubrication, you should

1. Wipe off the anti-rust oil on the surface of the rail and block to prevent it from diluting the grease.

2. Fill the entire space inside the block with grease until it just overflows.

Note:

Because the block scraper of ABBA has a good scraping and sealing effect, so the grease on the surface of the rail can not enter the block, nor can it have lubrication effect.

3 Recommended re-lubricition amount

Unit : m										
Recommended re-lubricition amount										
Nominal size	Amount	Nominal size	Amount	Nominal size	Amount					
BRC15A0		BRC25R0	3~4	BRD35A0						
BRC15R0	2~3	BRC25U0	2012	BRD35R0	6~8					
BRC15U0		BRC25SU	2.03	BRD35U0						
BRC15SU	1~2	BRC25LA		BRD35SU	4~6					
BRC20A0	2~3	BRC25LR		BRD35LA	7. 10					
BRC20R0		BRC30A0	4~6	BRD35LR	/~10					
BRC20U0		BRC30R0		BRD45A0						
BRC20SU		BRC30U0		BRD45R0	9~14					
BRC20LA		BRC30SU	3~5	BRD45U0						
BRC20LR	3~4	BRC30LA	6 - 19	BRD45LA	11.17					
BRC25A0		BRC30LR	0~8	BRD45LR	/ /					

Table 1.21.1

4 Grease performance

Item	No. 00	No. 2
Base oil	Mineral oil	Mineral oil
Soap base	Lithium	Lithium
Drop point°C	168	180
Appearance	Amber	Amber
Viscosity of base oil (cSt, @ 40 °C)	170	200
Viscosity of base oil (cSt, @ 100 °C)	15.5	16

Table 1.20.2

1.21.3 Oil re-lubrication

- First time re-lubrication: apply to whole internal block, please refer to table 1.20.1 for appropriate grease amount.
- Re-lubricaton amount: Q=n/150 (cm³/hrs) n: Nominal size of rail (mm)
- Recommended lubrication oil spec.
 Oil mist lubrication: ISO VG32~68
 Clearance oil lubrication: ISO VG68~220
 Oil type : DIN 51517 CLP or CGLP

Standard

Ball Caged

Miniature

Ball Screw

Support Unit

1.22 Grease nipple(standard)

P080391 (NLA01)

Standard front seal 15 0 20 25 30 35 45 Standard front seal 15 20 25 30 35 45 U type metal frame scraper plate \bigcirc

P080396

Standard front seal	15	20	\circ	25	30	35	45	
Standard front seal + U type metal frame scraper plate	15	20		25	30	35	45	

P080395 (NLB03)

P080397 (NLB02)

P080398 (NLB04)

Note:

For optional pipe nipples or other special nipples, please contact ABBA or ABBA authorized distributors.

1.23 Accessories

1.23.1 Standard front seal

Standard front seals are contact seals that can prevent external contaminants from entering the block Standard front seal is suitable for normal environment.

1.23.2 Low friction shield

Low friction shields are non-contact seals that can reduce running resistance caused by standard front seals. It is suitable for environments that require low running resistance and no external pollutants, such as clean rooms etc.

Only SIZE15-30 can be selected, please contact ABBA for other sizes.

1.23.3 So

Scraper plate

Scraper plates are non-contact seals that needs to be placed outside the seal. Its function is to prevent the seal from being damaged by larger pollutants or hot metal chips. Suitable for environments with large pollutants or metal chips, such as milling machines etc. Unit : mm

	Unit : mm
Model	Thickness
BR15	1
BR20	1
BR25	1.5
BR30	1
BR35	1
BR45	1

1.23.4 U type metal frame + side seals

U type metal frames can hold two side seals and change the block dimension values of L and E as below table. Refer to P38~43 for definition of L and E.

Ball Screw

Standard

Ball Caged

Miniature

Ball Screw

Support Unit

Linear Guide

29

1.24 BR Lubrication reservoir kit

BR lubrication reservoir kit is run by high oil content of reservoir and optimization of film forming designed to provide adequate and proper amount of lubricant to grooves of rails, thus reaching good effect of environmental protection and extend relubrication intervals.

Low friction shield

BR lubrication reservoir kit

Standard front seal

Outside screw

Set screw

1.24.3 Applicable scope

- Series
- Size
- Block
- End plate
- Preload
- Accuracy
- Maximum load
- Maximum speed
- : available for all blocks types

: BR series : 15 / 20 / 25 / 30

- : available for standard end plate only : available for all preload classes
- : available for all accuracy classes
- : less than or equal to 0.3C
- : less than or equal to 1 m/s
- Allowable temperature range : -10~50°C (continuous operation)
 - -10~80°C (short-term use)

1.24.4 Installation size

BR lubrication reservoir kit will increase the length of block. Please refer to the below table for thickness T.

Unit : mm

Size	BR lubrication reservoir kit thickness T
15	13
20	13
25	13
30	10

Standard

Ball Caged

Miniature

Ball Screw

Support Unit

1.25 Product overview

1.26 Rail drilling method

D0 Standard hole

For upper installation, plastic hole plugs are equipped as standard.

D4 Blind hole

For underneath installation with blind hole.

Standard

1.27 Maintenance and usage of Linear Guide

Since ABBA Linear Guides are very precise products, please pay careful attention to the following:

For non-interchangeable products, you cannot arbitrarily replace the block or change its installation direction, otherwise the accuracy of the product cannot be guaranteed.

1.28 Ordering key of System

Size														
15, 20, 25, 30, 35, 45														
Block type 1)]												
A0 Flanged block(Standard length, Standard	height)													Id
SU Slim-line block(Short length, Standard h	iaht)													ğ
LIO Slim-line block(Standard length Standard	l height)													tar
R0 Slim-line block(Standard length, Extend	d height)													S
LR Slim-line block(Extended length, Extended	d height)													
End Cap Type ²⁾														
C Standard End Cap(for 15, 20, 25, 30)														ed
Short End Cap(for 15, 20, 25, 30, 35, 45														ag
Number of blocks per rail														
~9 1~9 blocks per rail														Ba
~W >9 blocks per rail (10=A, 11=B, 12=C)														
reload class ³⁾														
F Clearance, Preload=0														U
0 No preload, Preload=0														tur
1 Light preload, Preload=0~0.02C														jia
2 Medium preload, 0.02~0.05C														<u> </u>
3 Heavy preload, 0.05~0.07C														~
ail length														
0080~99999 mm(1 mm steps)														
														_
l Normai L High														
Precision														≥
2ail holo														cre
Standard hole(Standard hole distance, the standard hole)	distance of th	o firet ar	- tael br	attachm	ont holo	e ie ni	roduce	d oqui	distan	thy)				5
Blind hole(Standard hole distance, the d	tance of the first	st and la	st attac	hment l	noles is	produ	ced eq	uidista	antly.)	uy.)				Ba
						•			,					
OINT TAIL 7														
No														
ail treatment														Jnit
Standard (anti-rust oil)														ر ب
Black oxidation														JOC 1
Hard chromium														ddr
Trivalent chromium														ິ
ealing 5)														
Standard front seal (only end seal)														
Standard front seal + Scraper plate														
Low friction shield														
BR lubrication reservoir kit + Standard fr	nt seal													
/ BR lubrication reservoir kit + Standard fr	it seal + Scrap	er plate												
Standard front seal + U type metal frame	F side seals													
o. of parallel rails ² /														
0 Single rail														
2~W9 Parallel rails (W2 : 2 rails, W3 : 3 rails)														
ople/set screw quantity per block	4) N ar	nd H clas	ss and t	heir par	allel use	d prod	lucts ar	e allov	ved to	he ioint	rails F	or othe	ar ioint	
	,					a p. o o	auoto ui	o unor	100 10	20100	rano. i	or our	John	

B. Size 20/25/30/35/45 : 45°nipple(1pc)+ screw(1 pc)

5) Block type cross table

- \bullet/\circ : Block type available
- 2) C: End cap with Self-lubricant part D: End cap without Self-lubricant part

3) Refer to following table for limitation

System									
Accuracy	P	Н	N						
	-	-	ZF						
Preload	Z0	Z0	Z0						
	Z1	Z1	Z1						
	Z2	Z2	Z2						
	Z3	Z3	Z3						

• : Sealing U type, Standard seal + Metal frame to hold two side seals

BRC (Standard End Cap)	A0	LA	su	UO	R0	LR	BRD (Short End Cap)	A0	LA	SU	U0	R0	LR
15	٠		0	•	•		15	0		0	0	0	
20	٠	0	0	•	•	0	20	0	0	0	0	0	0
25	٠	0	0	•	•	0	25	0	0	0	0	0	0
30	٠	0	0	•	•	0	30	0	0	0	0	0	0
35							35	٠	0	0	٠	٠	0
45							45	٠	0		٠	٠	0

35

6) Use in parallel or on the same surface, consistent with the description of difference.

1.29 Ordering key of Rail

Size _	
15, 20	25, 30, 35, 45
Rail lei	th
00080	99999 mm (1 mm steps)
Accura	/ class
Ν	Normal
Н	High
Rail ho	
Rail ho D0	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)
Rail ho D0 D4	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)
Rail ho D0 D4	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)
Rail ho D0 D4 Join ra	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)
Rail ho D0 D4 Join ra A	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) track ¹) Yes
Rail ho D0 D4 Join ra A 0	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) track ¹⁾ Yes No
Rail ho D0 D4 Join ra A 0 Rail tre	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) track ¹⁾ Yes No

1) N and H class and their parallel used products are allowed to be jointed rails. For other jointed rails requirements, please contact ABBA.

1.30 Ordering key of Block

	- 1)	R C 1 5 - A	<u>0</u> <u>Z 1</u> - <u>N</u> <u>(</u>	0 <u>s</u>	
End Cap	o Type "				
С	Standard End Cap(for 15, 20, 25, 30)				
D	Short End Cap(for 15, 20, 25, 30, 35, 45)				σ
Size					dar
15, 20,	25, 30, 35, 45				Stano
Block ty	/pe ²⁾				
A0	Flanged block(Standard length, Standard height)				
LA	Flanged block(Extended length, Standard height)				bg
SU	Slim-line block(Shot length, Standard height)				age
U0	Slim-line block(Standard length, Standard height)				Ö
R0	Slim-line block(Standard length, Extended height)				all
LR	Slim-line block(Extended length, Extended height)				<u>ш</u>
Preload	class ³⁾				
75	Clearance Preload=0				e
Z1 Z0	No preload Preload=0				tur
Z1	Light preload, Preload=0~0.02C				nia
					Mi
Accurac	cy class ³⁾				
Ν	Normal				
Н	High				
Block tr	eatment				
0	Standard (anti-rust oil)				
					>
					rev
	4)				Sc
Sealing	*)				all
S	Standard front seal (only end seal)				B
					lit

- 1) C: End cap with Self-lubricant part D: End cap without Self-lubricant part
- 2) Nipple/set screw quantity per block
 - A. Size 15 : 0° nipple(2pcs)
 - B. Size 20/25/30/35/45 : 45°nipple(1pc)+ screw(1 pc)

3) Refer to following table for limitation

	Block		
Accuracy	P	Н	N
	-	-	ZF
Preload	-	Z0	Z0
	-	Z1	Z1

- 4) Block type cross table
- •/o : Block type available
- : Sealing U type, Standard seal + Metal frame to hold two side seals

BRC (Standard End Cap)	A0	LA	SU	U0	R0	LR
15	•		0	٠	٠	
20	•	0	0	•	•	0
25	•	0	0	•	٠	0
30	•	0	0	•	•	0
35						
45						
BRD (Short End Cap)	A0	LA	su	U0	R0	LR
BRD (Short End Cap) 15	A0	LA	su °	U0	R0	LR
BRD (Short End Cap) 15 20	A0 0	LA o	SU o	U0 0	R0 0	LR o
BRD (Short End Cap) 15 20 25	A0 0 0	LA 0	SU 0 0	U0 0 0	R0 0 0	LR 0
BRD (Short End Cap) 15 20 25 30	A0 0 0 0 0	LA 0 0	SU 0 0 0	U0 0 0 0	R0 0 0 0 	LR 0 0 0
BRD (Short End Cap) 15 20 25 30 35	A0 0 0 0 0 •	LA 0 0 0 0	SU 0 0 0 0 0	U0 0 0 0 0 •	R0 0 0 0 •	LR 0 0 0 0

1.31 Dimension of Linear Guide

1.31.1 BRC-R0/LR, BRD-R0/LR

Model No.		Asse (m	mbly m)		Block (mm)							Rail (mm)				
	н	w	W2	E	L	BxJ	MQx	L1	Oil hole	T1	(N)	W1	H1	F	dxDxh	
BRC15R0 BRD15R0	28	34	9.5	4.6	66 56	26x26	M4x6	40	Ø 3	8.3	5	15	14	60	4.5x7.5x5.8	
BRC20R0 BRD20R0	30	30 44	12	5	77.8 67.8	32x36	M5v8	48.8	M6v1	7	15.6	20	18	60	6x9 5x9 0	
BRC20LR BRD20LR			12		92.4 82.4	32x50	oxcivi	63.4	WIOX I	'	10.0	20	10	00	0,9,5,9,0	
BRC25R0 BRD25R0	10	18	10 5	7	88 78	35x35	M6x10	57	M6x1	11.8	15.6	23	22	60	7×11×0.5	
BRC25LR BRD25LR	40	40	12.5		110.1 100.1	35x50		79.1	WOXT	11.0	10.0	20	~~~	00	771129.5	
BRC30R0 BRD30R0	45	60	10	10	0	109 99 40x40	– M8x13	72 M6v1	M6v1	10	15.6	28	26	80	Qv14v125	
BRC30LR BRD30LR	43	00	10	9	131.3 121.3	40x60		94.3	WIOXT		10.0	20	20	00	3714712.3	
BRD35R0 BRD35LR	55	70	18	9.5	109 134.8	50x50 50x72	M8x13	80 105.8	M6x1	15	15.6	34	29	80	9x14x12.5	
BRD45R0 BRD45LR	70	86	20.5	14	138.2 163	60x60 60x80	M10x16.5	105 129.8	M8x1	18.5	16	45	38	105	14x20x17.5	

Model No	Ref. data (mm)		Basic load rating (Kgf)		Ś	tatic mom (Kgf*m)	ent	Weight			
model No.	Lmax	G	С	Co	Мх	Му	Mz	Block (Kg)	Rail (Kg/m)		
BRC15R0 BRD15R0	4000	20	850	1350	10.1	6.8	6.8	0.19	1.4		
BRC20R0 BRD20R0	4000	20	1400	2400	24	14.6	14.6	0.31			
BRC20LR BRD20LR	4000	20	1650	3000	30	23.8	23.8	0.47	2.6		
BRC25R0 BRD25R0	4000	20	1950	3200	36.8	22.8	22.8	0.45	26		
BRC25LR BRD25LR	4000	20	2600	4600	52.9	45 <u>.</u> 5	45.5	0.56	3.0		
BRC30R0 BRD30R0	4000	20	2850	4800	67.2	43.2	43.2	0.91	5.2		
BRC30LR BRD30LR	+000	20	3600	6400	89 <u>.</u> 6	75 <u>.</u> 4	75.4	1.2	0.2		
BRD35R0 BRD35LR	4000	20	3850 4800	6200 8300	105.4 141.1	62 109.8	62 109.8	1.5 1.9	7.2		
BRD45R0	4000 22.5		6500 7700	10500	236.3	137.8	137.8	2.3	12.3		
DRD43LK			1700	13000	292.0	210.9	210.9	2.0			

Note: BR35 and BR45 are not equipped with self-lubricant parts.

Ball Screw

Support Unit

Standard

Ball Caged

Miniature

Linear Guide

1.31.2 BRC-A0/LA, BRD-A0/LA

Model No.	,	Asse (m	mbly m)		Block (mm)							Rail (mm)				
	н	w	W2	Е	L	BxJ	MQx↓	L1	Oil hole	T1	(N)	W1	H1	F	dxDxh	
BRC15A0	24	47	16	16	66	20,20	MEVQ	40	<i>d</i> 2	12	5	15	14	60	1 5x7 5x5 9	
BRD15A0	24	47	10	4.0	56	30230	IVI3X0	40	φS	4.5	5	15	14	00	4.587.585.6	
BRC20A0					77.8			18.8								
BRD20A0	30	63	215	5	67.8	53x40	M6v9	40.0	M6x1	7	15.6	20	18	60	6x9 5x9 0	
BRC20LA	50	00	21.5		92.4	00,40	INIOA3	62.4	IVIOX I		15.0	20	10	00	0.0.0.0.0	
BRD20LA					82.4			00.4								
BRC25A0			23.5		88		M8x12	57								
BRD25A0	26	70		7	78	57x45		57	M6x1	78	15.6	23	22	60	71110 5	
BRC25LA	30	70			110.1			70.1	MoxT	1.0		20	22	00	771179.0	
BRD25LA					100.1			73.1								
BRC30A0					109			70								
BRD30A0	12	00	21	0	99	72×52	M10v12	12	M6v1	7	15.6	28	26	80	9v1/v125	
BRC30LA	42	90	51	9	131.3	12232	WITOX 12	04.2	INIOAT	· '	10.0	20	20	00	3714712.0	
BRD30LA					121.3			34.3								
BRD35A0	10	400			109			80							0.44.40.5	
BRD35LA	48	100	33	9.5	134.8	82x62	M10x13	105.8	М6х1	8	15.6	34	29	80	9x14x12.5	
BRD45A0	<u> </u>	400	07.5	44	138.2	100.00	MADUAE	105	M04	0.5	10	45	20	405	44-00-47 5	
BRD45A0 60	60	120	37.5	14	163	100x80	WITZX15	129.8	IVI8X1	8.5	16	45	38	105	14x20x17.5	

Pagia load

Dof data

Standard	
Ball Caged	inear Guide

Miniature

Ball Screw

Ball Screw

Support Unit

Model No	(mr	ומנמ ו)		gf)		(Kgf*m)		Weight			
modor No.	Lmax	G	С	Co	Mx	Му	Mz	Block (Kg)	Rail (Kg/m)		
BRC15A0 BRD15A0	4000	20	850	1350	10.1	6.8	6.8	0.21	1.4		
BRC20A0 BRD20A0	4000		1400	2400	24	14.6	14.6	0.4			
BRC20LA BRD20LA	4000	20	1650	3000	30	23.8	23.8	0.52	2.6		
BRC25A0 BRD25A0	4000	20	1950	3200	36.8	22.8	22.8	0.57	26		
BRC25LA BRD25LA		20	2600	4600	52.9	45.5	45.5	0.72	3.0		
BRC30A0 BRD30A0	4000	20	2850	4800	67.2	43.2	43.2	1.1	5.2		
BRC30LA BRD30LA	4000	20	3600	6400	89.6	75 <u>.</u> 4	75.4	1.4	5.2		
BRD35A0	4000	20	3850 4800	6200 8300	105.4	62 109.8	62 109.8	1.6	7 <u>.</u> 2		
BRD45A0	4000	22.5	6500	10500	236.3	137.8	137.8	2.7	12.3		
BRD45LA	1000	22.0	7700	13000	292.5	210.9 Note: BR	210.9 35 and BR45 ar	3.6 e not equipped witl	n self-lubricant parts		

Static momen

1.31.3 BRC-SU/U0, BRD-SU/U0

Model No.		Asse (n	embly 1m)		Block (mm)								Rail (mm)			
	н	w	W2	Е	L	BxJ	MQxl	L1	Oil hole	T 1	(N)	W1	H1	F	dxDxh	
BRC15U0					66	26,226		40								
BRD15U0	24	34	95	4.6	56	20220	M4x5.6	40	d 2	4.3	5	15	14	60	4 5x7 5x5 8	
BRC15SU	27	04	9.5	U	47.6	26v -	MHX0.0	21.6	¢5					00	4.077.070.0	
BRD15SU					37.6	207-		21.0								
BRC20U0					77.8	32232		48.8								
BRD20U0	28	42	11	5	67.8	527.52	M5x6.4	-0.0	M6x1	5	15.6	20	18	60	6x9 5x9 0	
BRC20SU	20				57	32v	monor	28			1010	20			0,0,0,0,0	
BRD20SU					47	527 -		20								
BRC25U0					88	35v35	M6x8	57								
BRD25U0	33	48	12.5	7	78	55755			M6v1	4.8	15.6	23	22	60	7v11v9 5	
BRC25SU	00	-0	12.0	1	62.5	35y -		31.5	MOXT			20		00	771170.0	
BRD25SU					52.5	007		01.0								
BRC30U0					109	40x40		72								
BRD30U0	40	60	16	0	99	10/10	MOV11 E	12	Mext	7	15.6	20	26	00	9v1/v125	
BRC30SU	42	00	10	9	75.6	40×	1010X11.5	38.6	IVIOX I	· /	15.0	20	20	00	0/11/12.0	
BRD30SU					65.6	408 -										
BRD35U0	10	70	10	0.5	109	50x50	M0v11 0	80	Mext	0	15.6	24	20	00	0×14×125	
BRD35SU	40	10	10	9.5	74.7	50x -	IVIOX I I.Z	45.7		0	10.0	54	29	00	9814812.0	
BRD45U0	60	86	20.5	14	138.2	60x60	M10x13	105	M8x1	8.5	16	45	38	105	14x20x17.5	

Model No	Ref. data (mm)		Basic load rating (Kgf)		S	tatic mom (Kgf*m)	ent	Weight						
	Lmax	G	С	Co	М×	Му	Mz	Block (Kg)	Rail (Kg/m)					
BRC15U0			850	1350	10.1	6.8	6.8	0.17						
BRD15U0	4000	20			10.1				1.4					
BRC15SU	1000	20	23	520	680	5.1	1.8	1.8	0.1					
BRD15SU								0.1						
BRC20U0			1400	2400	24	1/1.6	14.6	0.26						
BRD20U0	4000	20	20	20	20	20		2100	24	14.0	14.0	0.20	2.6	
BRC20SU			950	1400	7	4.9	4.9	0.17						
BRD20SU			000	1100				0.117						
BRC25U0		20	1950	3200	36.8	22.8	22.8	0.38						
BRD25U0	4000		20	20	20	20	20	1000				22.0		3.6
BRC25SU									20			1250	1750	17.5
BRD25SU			1200			0.0	0.0	0.21						
BRC30U0			2850	4800	67.2	43.2	43.2	0.81						
BRD30U0	4000	20	2000	4000	07.2	40.2	40.2	0.01	5.2					
BRC30SU	4000	20	20	20	20	20	1750	2400	33.6	11.6	11.6 11.6	0.48	0.2	
BRD30SU			1100	2400	00.0	11.0	11.0	0.40						
BRD35U0	4000	20	3850	6200	105.4	62	62	1.2	70					
BRD35SU	4000	20	2500	3650	62.1	20.9	20.9	0.8	1.2					
BRD45U0	4000	22.5	6500	10500	236.3	137.8	137.8	2.1	12.3					

Note: BR35 and BR45 are not equipped with self-lubricant parts.

Miniature

Standard

Ball Screw

Support Unit